Sample Final Answers

1. (a) As x gets close to a, f(x) gets close to L.
(b) f(z) is cts at a if
lim f(z) = f(a).

r—a

(¢) The derivative of f(x) at a is

: . f) = fla) .. fla+h)—fla)
f'(x) = lim “———~ = lim Y

T—a Tr—a h—0

(d) The integral of f(z) from a to b is
b n
/ f(x) de = lim 3" Axf(z;)
a n— oo =

—a and z; = a + 1Ax.

where Az =

2. (a) The Fundamental Theorem of Calculus (Part I) states that if f is
a continuous function, and

o) = [ f(0) at

then ¢'(x) exists and equals f(z).

(b) The Fundamental Theorem of Calculus (Part II) states that if f is
a continuous function, and g(x) is an anti-derivative of f(z), then

o 2—x ' 432 —227% 2
lim S
z—00 r34+272+6 6

3. (a) Dividing by the highest of power of x (namely, z?), we get
1
-3

(b) If we substitute x = 1, we get %. So we use L’'Hopital’s rule to get




(c) If we take x to oo, we get 22. So we use L’Hopital’s rule to get

T x

. . €
lim — = lim — = o
r—00 z—o0 ]|

So the limit does not exist.

(d) If we take z = 0, we get %. So we use L'Hopital’s rule to get

. 1—cosx . sinx 0
lim ——— = lim =-=0
z—0 sinx z—0 COS T 1

4. (a) We use product rule to get
f'(x) = (e")(sinz + 2) + (e + 1)(cos x)
(b) Using quotient rule, we get

(2% +1)(2e**) — (22)(e*®) _ 2% (z? + 1 — x)
(z2 4 1)? (22 +1)2

f'(a) =
(c) By the Fundamental theorem of calculus (Part I),
fla) ="~ a?
5. Using chain rule, we get

dy 243

RGN 2

o= ¢ ()

So the slope of the tangent line at x = 0 is 0. Thus the slope of the

normal line is o which does not exist. Therefore the normal line does

not exist.

6. We differentiate both sides to get

dy dy (22 + 1)(1) — (2z)(x)
27 — —_— —
3 dr Vi (22 +1)2
dy —2?+1
2 — < — -
(8y” — cos y)dx (2 4+ 1)2
dy —r2+1
dr (224 1)2(3y? — cosy)



7. Let V be the volume of the cube, A the surface area of the cube, and
e the length of an edge. We know %Y, and we want to find %. So we

dt
need to relate V and A.

The area of one side of the cube is e?, so since there are six sides to a
cube, the total surface area is A = 6e2. Also, the volume of the cube
is V = e3. Thus e = V3. Thus, substituting this into the formula for
A gives A = 6V?/3,

Differentiating both sides with respect to time ¢, we get

AA_ 20V 4 v

dt 3 dt — V3 dt
We know that e = 30, so V'/® = ¢ = 30, and 4 = 10. Thus we have

dA 4 0 4
dt — (30) 10) =353

Thus the surface area is increasing at a rate of %cm2 /min.

8. Let x be the distance from the waterskier to the base of the ramp, and
let h be the height of the waterskier from the water. We know % and
we want to find %.

First, we can find the length of the ramp using Pythagoras’ Theorem:
it is v/152 + 42 = 1/241. Then by similar triangles, we know that

h 4

T /241
Thus 4

I

V241

Taking the derivative with respect to time ¢, we get

dh 4 dx 4 120

o T T (30) =
dt V241 dt \/241( ) 241

Thus the waterskier’s height is increasing at a rate of —— ft/sec.

V241



9. (a) First, we find the derivative:
fl(z) = 42° — 4o = 4x(2* — 1)

Since the are no points where the derivative does not exist, the
only critical points occur when f’(x) = 0. So the critical points
are x = 0,—1,1.

We then test each of these critical point values, as well as the end-
points (-1 and 4). We get f(—1) = 2, f(0) = 3, f(1) =2, f(4) =
227. Thus the minimum is 2, and the maximum 227.

(b) First, we find the derivative:

(2 +4)(2x) — (22)(z* —4)  22°4+8r—22°+8z 16z

f'(x) =

(:v2+4)2 (x2+4)2 o (x2 +4)2

The only points where the derivative might not exist are where
2?4+ 4 = 0. Since this never occurs, there are no points where the
derivative does not exist. Thus the only critical points are when
f'(x) = 0; this happens when x = 0.

We then test the critical point value, as well as the endpoints (-
4 and 4). We get f(—4) = 2,f(0) = —1,f(4) = 2. Thus the
minimum is —1, and the maximum 2

5.
(c) First, we find the derivative:
flla)=(e") +a(-e")=e"(1-2)

Since the are no points where the derivative does not exist, the
only critical points occur when f/(x) = 0. So the critical points
are l —x =0,s0x =1.

We then test this critical point, as well as the endpoints (0 and
2). We get f(0) =0, f(1) = e, f(2) = 2¢72. Plugging the last
two values into a calculator, one can find that e=! > 2¢72. Thus
0 is the minimum, and e~! the maximum.

(d) First, we find the derivative:

f'(x) =cosx —sinx

4



10.

Since the are no points where the derivative does not exist, the
only critical points occur when f’(z) = 0, so when cosz = sinz
in the interval [0, Z]. This only happens when z =

ISR

We then test this critical point, as well as the endpoints (0 and %).

We get f(0) =1, f (%) =2, f (g) = @ Plugging the last

V3HL o

two values into a calculator, one can find that v/2 > 5

Thus 1 is the minimum, and v/2 the maximum.

We begin by finding when the derivative equals 0. y' = —2 — 322,
so we want to find when —3z? = 2. Since z? is always posi-
tive, this never occurs. So the whole space is the only interval:
(—o0,00). We take a test point in that interval (z = 0) and since
f'(0) =2 < 0, f(x) is decreasing on the interval (—oo,00) (that
is, everywhere). Since the function is always decreasing, there are
no local maxima or minima.

We next find where y” = 0. Since 3y = —6x, this happens when
x = 0. So our intervals of concavity are (—o0,0), (0,00). Taking
test points —1 and 1, we get y’(—1) =6 > 0 and y"(1) = =6 <
0. So the curve is concave up on (—o0,0) and concave down on
(0,00), and 0 is a point of inflection.

We begin by finding where the derivative equals 0. Using quotient
rule,

, (2 +8)(2x) — (2?)(1) 2+ 16z

N (x +8)2 - (24 8)2

So the derivative will be 0 at x = 0 and x = —16. Our intervals
will be (—o0, —16), (—16,0), (0, 00). Taking test points 1, —1, —20,
we find y'(1) > 0,y/(—1) < 0,4'(—20) > 0. Thus on (—oo0, —16)
and (0,00), f(x) is increasing, while on (—16,0), f(z) is decreas-
ing. So x = —16 is a local max, and z = 0 is a local min.

We now find the 2nd derivative:

s (2 +8)%(2x +16) — (2)(x + 8)(z” + 161)
- o+ 9




Simplifying, this becomes
, (223 + 3227 + 128z + 1622 + 2567 + 1024) — (223 4 162* + 3222 + 2561)

- (z + 8)1
So we have
, 128 +1024  128(x + 8)
 (z+8)* (v +8)4

So ¢y’ = 0 when x = —8. Taking test points —9 and 0, we find
that on (—oo, —8), f(z) is concave down, while on (—8,00), f(z)
is concave up. However, x = —8 is not an inflection point since
the function is not defined at x = —8.

(c) We begin by finding where the derivative equals 0.
y = e (2 — 2x)

So the derivative will be 0 when 2 = 2x, so x = 1. Taking
test points 0 and 2, we find that 3’(0) > 0 while 3/(2) < 0. So
on (—oo,1), f(x) increasing, while on (1,00), f(z) is decreasing.
Thus z =1 is a local maximum.

Taking the second derivative, we get

2

y// — (2 —_ 21.)6217932 (2 . 21_) + (_2) <€2357x

)

. 2 .
Factoring e**~%" gives

Yy = (4 — 8+ 4a® — 2) = 27 (222 — 4z + 1)

So the second derivative will be 0 when 222 —4x + 1 = 0. We
can use quadratic formula to find the solutions to this equation:

r=1+ % Taking test points 0, 1,2, we get y”(0) > O,yl”(l) <

0,4"(2) > 0. So the function is concave up on (—oo,1 — —5) and
(1+ \%, o0), while it is concave down on (1 — %, 1+ %) Thus
r=1%+ % are inflection points.

(d) We first find the derivative:

y' = 2cos2x

6



11.

12.

Thus the derivative is 0 when cos2z = 0. In the interval [0, 7],
this occurs when x = 7, x = ?jf. Taking test points 0, 7, m, we
get ¥'(0) > 0,9'(5) < 0,y'(m) > 0. So the function is increasing
on [0, %) and (7, 7], while decreasing on (%,27). Thus z = T is a
local maximum, and z = ?jf is a local minimum.

The second derivative is

2

Yy = —4sin2x

Thus the derivative is 0 when sin2z = 0. In the interval [0, 7],

this occurs when z = 7. Taking test points 0, 7w, we find 3"(0) < 0

while y”(m) > 0. Thus the function is concave down on [0, 7), and
concave up on (5, 7|. Thus z = 7 is an inflection point.
To find the horizontal asymptotes, we find the limit as x goes to oco.
So we calculate:
) r? -1 1
lim ——— = -
=00 332 + 6 —24 3

So the function has a horizontal asymptote to the line y = %

To find the vertical asymptotes, we find where the function goes off to
0o; namely where we divide by 0. For this function, this occurs when
322+ 6z —24 =0, so when 22 + 2z —8 =0, or (z +4)(z —2) =0. So
there will be vertical asymptotes at © = 2 and z = —4.

Finally, we want to find what direction the function goes as it ap-
proaches these asymptotes (0o or —00). As z goes to -4 from below,
y is positive, so it approaches co. As x approaches -4 from above, y
is negative, so it approaches —oo. As x approaches 2 from below, ¥ is
negative, so it approaches —oo. As x approaches 2 from above, y is
positive, so it approaches oo.

b-a :541:1andxi:a+iA:U:1+i.

So x1 =2,29 =3,x3 =4,24 = 5. So we have the Riemann sum is

For this function, Ax =

= Z:Axf(xi)



13.

14.

(Df2)+ M) fB3)+ (1) f(4) + (1) f(5)
= (22-2)+ (3 —-2)+(4*-2)+(5°-2)
= 6+25+62+123
= 216

(a) The general antiderivative is e* — 6x 4 C.
(b) The function is f(x) = —227/2, so the general antiderivative is

—2y1/2
1/2

+C=—-4/z+C

(c) The function is f(x) = 2~ + 272, so the general antiderivative is

-1

1
mz+ 2 4 C=lnzr——-+C
—1 x

(d) The general antiderivative is —3 cosz — 2sinz + C.

a) An antiderivative of 4z + 3 is 222 + 3z, so
(a)

/j 4o + 3 dr = [2(8)% + 3(8)] — [2(2)* + 3(2)] = 152 — 14 = 148

)
(b) An antiderivative of 5z~ is 5527 %0
x

55 ) )
/4 3 l2(5)2] [2(—5)2]
(c) The general antiderivative of (4 — ) is

—(4—x)"
10

+C

(d) If we substitute v = z* + 1, then du = 2z dz, so idu = z dz.

Thus )
x
——dx = /— d
/(x2+1)2 v 2u2 "

Integrating gives

—1 —1
2w O gy TC



(e) If we substitute z = sin 6, then dz = cosf df, so
[ cososin®0 o = [ du

Integrating gives
u’ (sin9)7
—+C=
7 7
(f) If we substitute u = e* + 1, then du = e* dz; when z = 0,
u=e"+1=2 whenz =1, u=-e+ 1. Thus

+C

= [T g — et 1) — (2
/oe$+1 x-/z au_n(e—i- ) —1In(2)



